Abstract P1160

A CRISPR-edited allogeneic anti-CD19 CAR-T cell therapy with a PD-1 knockout (CB-010) for relapsed/refractory B cell non-Hodgkin lymphoma (r/r B-NHL): Updated phase 1 results from the ANTLER trial

Boyu Hu¹, Loretta Nastoupil², Houston Holmes³, Ayad Hamdan⁴, Abraham S. Kanate⁵, Umar Farooq⁶, Mohamad Cherry⁷, Elizabeth Brem⁸, Lauren Pinter-Brown⁸, Daniel Ermann¹, Muhammad Husnain⁹, Kenneth Micklethwaite¹⁰, Syed Rizvi¹¹, Ashley Hammad¹¹, Ben Thompson¹¹, Enrique Zudaire¹¹, Socorro Portella¹¹, Mehdi Hamadani¹², James Essell¹³, Susan O'Brien⁸

¹Huntsman Cancer Institute, Salt Lake City, Utah, USA; ²MD Anderson Cancer Institute, Houston, Texas, USA; ⁴University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA; ⁷Morristown Medical Center, Morristown, New Jersey, USA; ⁴University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA; ⁷Morristown Medical Center, Morristown, New Jersey, USA; ⁴University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA; ⁷Morristown Medical Center, Morristown, New Jersey, USA; ⁴University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA; ⁴University of California, USA; ⁴University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA; ⁴University of California, USA; ⁴University of Iowa Hospitals, Texas Oncology – Baylor Sammons Cancer Center, Dallas, Texas Oncology – Baylor Sammons Cancer Center, USA; ⁴University of Iowa Hospitals, Iowa City, Iowa, USA; ⁴University of California, USA; ⁴University of Iowa Hospitals, Iowa City, Iowa, USA; ⁴University of California, USA; ⁴University of Iowa Hospitals, Iowa City, Iowa, USA; ⁴University of Iowa Hospitals, Iowa City, Iowa, USA; ⁴University of Iowa Hospitals, Iowa City, Iowa, USA; ⁴University, Iowa, USA; ⁴University, Iowa, USA; ⁴University, Iowa, ISA; ⁴University, ⁸University of California Irvine, Irvine, Irvine, California, USA; ¹⁰New South Wales, Australia; ¹¹Caribou Biosciences, Inc., Berkeley, California, USA; ¹²Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA; ¹³Oncology Hematology Care, Cincinnati, Ohio, USA

Baseline LDH, U/L, median (range) Baseline LDH > ULN, n (%) LDH >2 x ULN, n (%)

¹ IPI scores were not recorded for all patients

Maximum lesion diameter ≥7.5 cm, n (%)

2L LBCL: patients with large B cell lymphoma; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; AESIs: adverse events; CRS: cytokine release syndrome; CAR: chimeric antigen receiving second-line treatment; CR: complete response; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CAR: chimeric antigen received 80x10⁶ CAR-T cells; AEs: adverse events; CRS: cytokine release syndrome; CRS: cy

18 (39.1)

10 (21.7)

216 (126-1799)

23 (50.0)

7 (15.2)

3 (18.8)

3 (18.8)

5 (31.3)

1 (6.3)

202 (126-710)

15 (50.0)

7 (23.3)

18 (60.0)

6 (20.0)

233.5 (140-1799)

• CB-010 is a CD19-targeted allogeneic CAR-T cell therapy engineered with a PD-1 knockout employing a 4-1BB costimulatory domain. It is manufactured using Cas9 CRISPR hybrid RNA-DNA (chRDNA) technology, which allows for

1 knockout of the *TRAC* gene to eliminate T cell receptor expression

5 site-specific insertion of a CD19-targeted CAR expression cassette

3 knockout of *PDCD1*, the gene encoding PD-1

3 Edits 🤨 3 PD-1 KO for B cell 1 TCR KO

1st allogeneic anti-CD19 CAR-T cell therapy in the clinic with checkpoin disruption via PD-1 knockout (KO) to reduce T cell exhaustion

CB-010 TREATMENT AND RP2D

• Median time from confirmed eligibility to the start of lymphodepletion was 2 days (range 0-12)

Median time from confirmation of eligibility to CB-010 infusion (including lymphodepletion) was 11 days (range 9-21) • As of the cutoff date, 2 patients have completed the study in CR (defined as 24 months post CB-010 infusion), 16 are ongoing, and 28 have discontinued, including 5 who died and 23 who experienced disease progression

- Based on the review and analysis of safety, efficacy, and PK data, 80×10⁶ CAR-T cells has been selected as the RP2D for CB-010 The safety profile was similar across dose levels
- There was no significant difference in cytopenia recovery across dose levels The 80×10⁶ CAR-T cell dose showed improved efficacy in 2L LBCL patients relative to the 40×10⁶ and 120×10⁶ CAR-T cell doses (Figure 2)
- CB-010 PK profile was independent of dose level

Table 2. Dose for all treated patients

Study phase				
	40×10 ⁶ CAR ⁺ T cells (N=14)	80×10 ⁶ CAR ⁺ T cells (N=23)	120×10 ⁶ CAR ⁺ T cells (N=9)	— Total (N=46)
Dose escalation	8	5	3	16
Dose expansion	6	18	6	30

SAFETY AND TOLERABILITY

Table 3. Treatment-emergent adverse events in ≥20% of all patients

System organ class, n (%) Preferred term, n (%)	All treated (N=46)		LBCL subgroup (N=40)		2L LBCL RP2D subgroup (N=20)	
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Any TEAE	46 (100)	41 (89.1)	40 (100)	35 (87.5)	20 (100)	18 (90.0)
Thrombocytopenia	30 (65.2)	29 (63.0)	26 (65.0)	25 (62.5)	12 (60.0)	11 (55.0)
Anemia	27 (58.7)	24 (52.2)	24 (60.0)	22 (55.0)	13 (65.0)	11 (55.0)
Neutropenia	22 (47.8)	19 (41.3)	18 (45.0)	15 (37.5)	10 (50.0)	8 (40.0)
White blood cell count decreased	15 (32.6)	14 (30.4)	14 (35.0)	13 (32.5)	9 (45.0)	8 (40.0)
CRS	26 (56.5)	0	23 (57.5)	0	13 (65.0)	0
Infections	22 (47.8)	10 (21.7)	19 (47.5)	8 (20.0)	9 (45.0)	6 (30.0)
Hypokalemia	11 (23.9)	0	9 (22.5)	0	4 (20.0)	0
Pyrexia	11 (23.9)	0	10 (25.0)	0	2 (10.0)	0
ICANS	10 (21.7)	3 (6.5)	8 (20.0)	2 (5.0)	5 (25.0)	1 (5.0)
Diarrhea	10 (21.7)	0	7 (17.5)	0	3 (15.0)	0

- The most common grade \geq 3 TEAEs were thrombocytopenia (63.0%), anemia (52.2%),
- and neutropenia (41.3%) (Table 3) - 37 out of 46 patients (80%) recovered from cytopenias to grade ≤ 2 by day 35 post CB-010 infusion
- GvHD was not observed in any patients TEAEs associated with CB-010 are shown in
- Table 4 Median time to ICANS onset was 7.5 days (range 6-34), and median duration was 2 days (range 1-27)
- Median time to CRS onset was 3 days (range 0-22), and median duration was 3 days (range 1-19)
- Five patients died due to AEs following CB-010 infusion, one of which was possibly related to CB-010 per investigator
- This death was due to complications of a bladder perforation in the context of a BK virus hemorrhagic cystitis

Table 4. Notable treatment-emergent adverse events

TEAE, n (%)	All tre (N=	
	Any grade	Grade ≥3
Cytopenias ¹	38 (82.6)	38 (82.6)
CRS	26 (56.5)	0
Infections	22 (47.8)	10 (21.7)
ICANS	10 (21.7)	3 (6.5) ²
HLH	1 (2.2)	0
GvHD	0	0

¹Includes TEAE records with preferred terms neutropenia, neutrophil count decreased, thrombocytopenia, platelet count decreased, and anemia ²2 grade 3 events, 1 grade 4 event, 0 grade 5 events; all events resolved with supportive care

EFFICACY

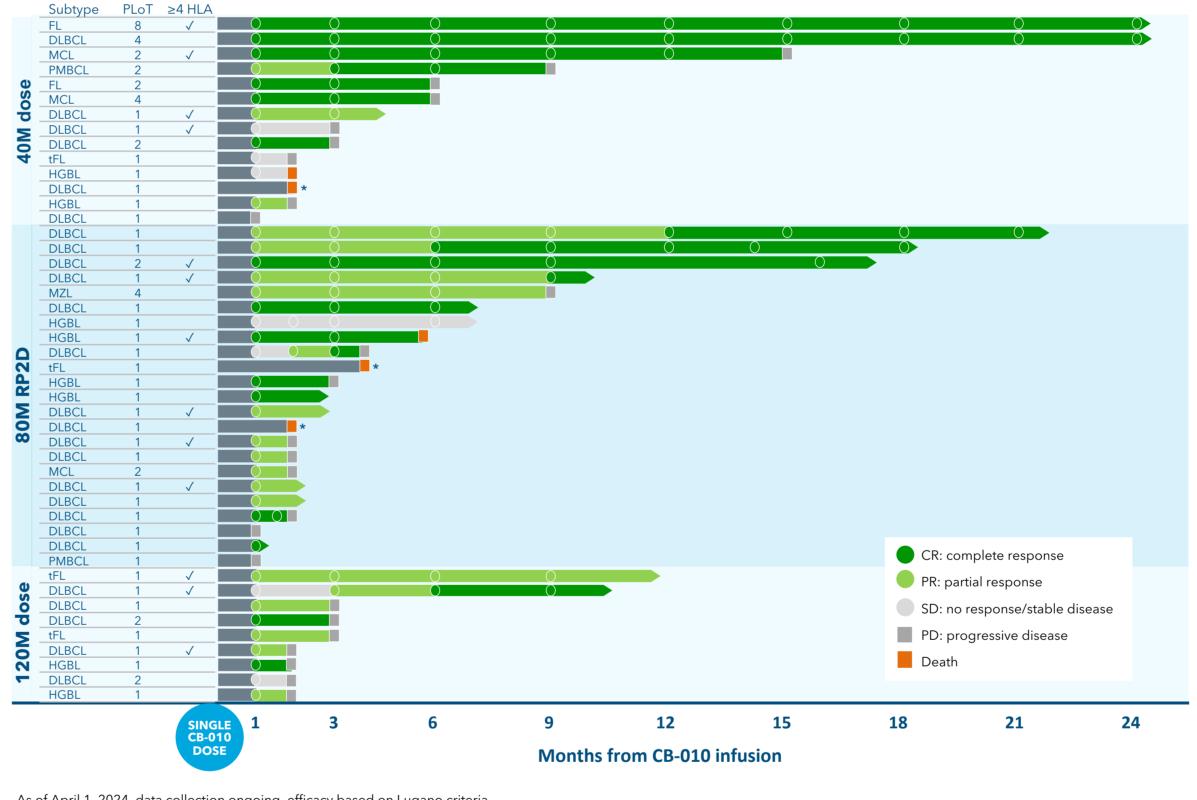
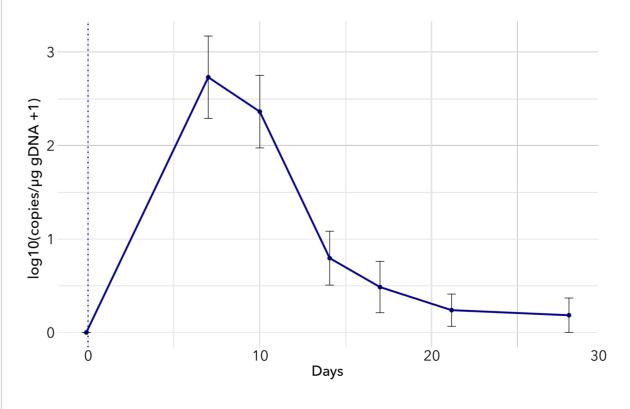

- Median overall follow-up at the time of data cutoff was 6.0 months (range 1-27), 16.8 months (range 2-27) for Part A and 3.7 months
- (range 1-11) for Part B • For all patients infused, ORR was 76.1% (Table 5)
- 21 (45.7%) patients achieved a CR as best response
- Median time to CR was 28 days (range 28-357) for all patients and all subgroups
- Median duration of CR was 6.7 months for all patients and the LBCL subgroup • Median duration of CR was not reached in the 2L LBCL RP2D subgroup

Table 5. Preliminary efficacy

	All treated (N=46)	LBCL subgroup (N=40)	2L LBCL RP2D subgroup (N=20)
ORR, n (%)	35 (76.1)	29 (72.5)	15 (75.0)
DOR, months, median (range)	5.0 (0.7-23.0+)	2.1 (0.7-23.0+)	4.8 (0.7-19.8+)
CR rate, n (%)	21 (45.7)	17 (42.5)	10 (50.0)
Duration of CR, months, median (range)	6.7 (0.6-23.0+)	6.7 (0.6-23.0+)	NR (0.6-12.2+)
Follow-up time for CR, months, median (range)	12.2 (0.0-23.0)	9.0 (0.0-23.0)	5.2 (0.0-12.2)
Time to first CR, days, median (range)	28 (28-357)	28 (28, 357)	28 (28-357)
PR rate, n (%)	14 (30.4)	12 (30.0)	5 (25.0)

+ denotes censored observation


Figure 2. Efficacy outcomes in all patients by CB-010 dose (N=46)

As of April 1, 2024, data collection ongoing, efficacy based on Lugano criteria *Denotes patient that did not have an efficacy assessment

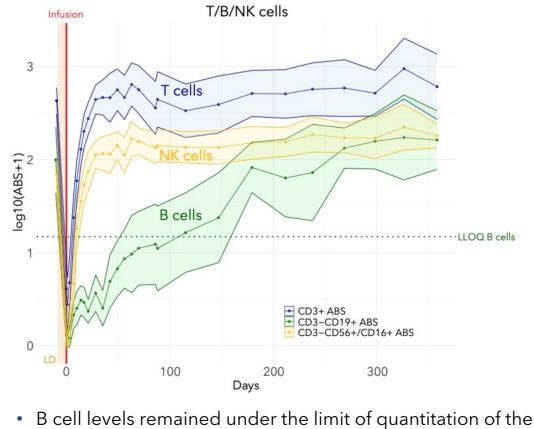

TRANSLATIONAL ANALYSES

Figure 3. Pharmacokinetics parameters

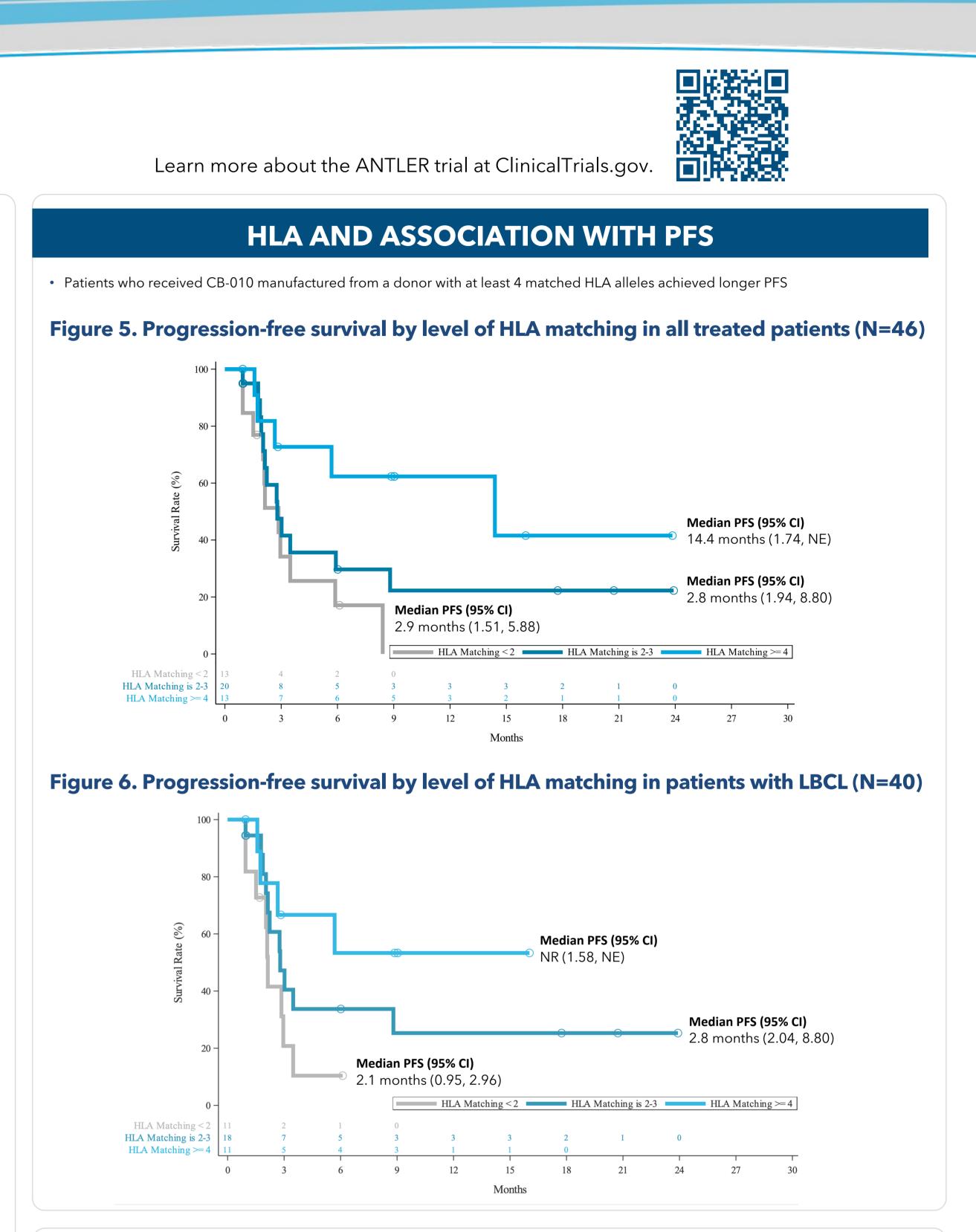
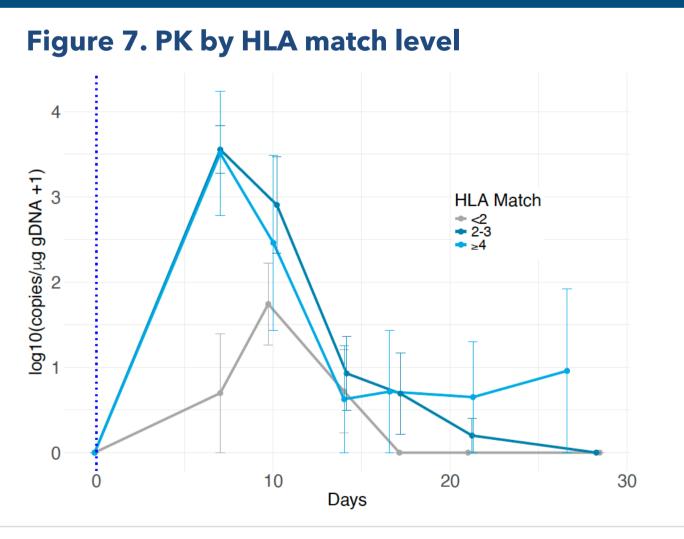

- Peak expansion (C_{max}) of CB-010 occurred between days 7 and
- 10 post infusion • Persistence of CB-010 was observed up to approximately 30 days
- based on ddPCR assay
- No relationship between CB-010 dose and exposure was observed

Figure 4. Changes in B cells, T cells, and NK cells over time in all patients



- assay for over 100 days on average, supporting specific targeting of B cells by CB-010
- B cells recover to normal levels by ~260 days • T cells and NK cells recovered approximately 3 weeks after completion of lymphodepletion

reaction; **DLBCL**: diffuse large B cell lymphoma; **DLTs**: dose-limiting toxicities; **DOR**: duration of response; **DSA**: donor-specific antibodies; **ECOG**: Eastern Cooperative Oncology Group; **FL**: follicular lymphoma; **HLH**: hemophagocytic lymphoma; **HLH**: hemophagocytic lymphoma; **DLTs**: dose-limiting toxicities; **DOR**: duration of response; **DSA**: donor-specific antibodies; **ECOG**: Eastern Cooperative Oncology Group; **FL**: follicular lymphoma; **HLH**: hemophagocytic lymphoma; **DLTs**: dose-limiting toxicities; **DOR**: duration of response; **DSA**: donor-specific antibodies; **ECOG**: Eastern Cooperative Oncology Group; **FL**: follicular lymphoma; **DLTs**: dose-limiting toxicities; **DOR**: duration of response; **DSA**: donor-specific antibodies; **ECOG**: Eastern Cooperative Oncology Group; **FL**: follicular lymphoma; **DLTs**: dose-limiting toxicities; **DOR**: duration of response; **DS**: not otherwise specified; **NR**: not reached; **ORR**: overall response rate; **PD**: progressive disease; **PFS**: progression-free survival; **PK**: pharmacokinetics; **PLOT**, prior lines of therapy; **PMBCL**: primary mediastinal large B cell lymphoma; POD24: progression of disease within 24 months; PR: partial response; RP2D: recommended Phase 2 dose; r/r: relapsed/refractory; SAEs: serious adverse events; SD: stable disease; TCR: T cell receptor; TEAEs: treatment-emergent adverse events; tFL: transformed follicular lymphoma; ULN: upper limit of normal

IMPACT OF HLA ON CB-010 PK

CONCLUSIONS

- In this first-in-human Phase 1 trial in patients (N=46) with aggressive forms of r/r B-NHL, CB-010 demonstrated encouraging safety and antitumor activity
- No GvHD, no grade \geq 3 CRS, 6.5% of patients experienced grade \geq 3 ICANS - Cytopenia recovery to grade ≤ 2 occurred in 80% of patients by day 35 after CB-010 infusion
- For all patients infused, ORR was 76.1%, and 45.7% of patients achieved a CR as best response
- The RP2D has been determined to be 80×10⁶ CAR-T cells

• Expansion and persistence of CB-010 were

impacted by the level of HLA matching

- The off-the-shelf availability of CB-010 allowed for lymphodepletion to begin a median of 2 days after confirmation of eligibility
- Higher HLA matching is associated with improved PFS in these data, and approximately 20 additional 2L LBCL patients with partial HLA matching (≥4 alleles) will be enrolled

CORRESPONDING AUTHOR Boyu Hu, MD (boyu.hu@hci.utah.edu) Huntsman Cancer Institute, Salt Lake City, UT

American Society of Clinical Oncology Annual Meeting Hematologic Malignancies—Lymphoma and Chronic Lymphocytic Leukemia June 3, 2024 - Chicago, IL

EUROPEAN HEMATOLOGY